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1. Objectives 

The objectives of this research effort were to exploit recent advances in neural network 
(NN) based adaptive control, with the goal of being able to treat a very general class of 
nonlinear system, for which the dynamics are not only uncertain, but may in fact be 
unknown except for minimal structural information, such as the relative degree of the 
regulated output variables. We were particularly interested in designing adaptive control 
systems that are robust with respect to both parametric uncertainty and unmodeled 
dynamics. Extensions to decentralized control were also of interest. In addition, we placed 
a high priority on transition opportunities in aircraft flight control, control of flows, control 
of flexible space structures, and control of aeroelastic wings. 

2. Accomplishments 

2.1 Accomplishments in Year-1 

Adaptive Output Feedback Control.[J2,J3J2&J3-Year2,C6,C10]: Output feedback 
control architectures typically make use of state estimation, and therefore require that the 
dimension of the plant be known. Existing approaches either restrict the output to have full 
relative degree, or restrict the uncertainties in the plant to be dependent only on the output 
variables. Development of an adaptive output feedback approach for highly uncertain 
systems that overcomes these restrictions has been the main thrust of our research during 
the past several years. Our efforts this year have resulted in two promising approaches 
[J3]. The first is a direct adaptive control. The second uses a novel, non-adaptive error state 
observer. The controller architectures have proven not only to be robust to uimiodeled 
dynamics, but also have the capability to interact with and control these dynamics. The 
control architecture for the first approach is shown in Figure 1. The main features of this 
architecture include the dynamic compensator, with an additional output (y^^) used in the 
NN training algorithm, and a delayed signal generation block, the outputs of which are 
used as inputs to the NN and are utilized to estimate the model inversion error firom past 
measurements. 
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Fig. 1 The adaptive output feedback control architecture. 

The delayed signal generation block is common to both approaches. We have considered 
general SISO systems represented by the system equations 

x = f{x,u) 

y = h{x) 

where xeR" is the system state vector, u is the scalar control input, y is the scalar 
measurement and regulated output, and /(•,) and h{) are partially known, or unknown 
sufficiently smooth functions. Additional outputs, which are not regulated, may be 
incorporated into the design approach. The only modeling assumption is that the relative 
degree (r < n) of the output is known. Thus, the r^ derivative of the output is the first 
derivative of the output that is "strongly" affected by the control, i.e. 

7«=A,(X,M) 

where h^(x,u)is also a partially known, or unknown function. Feedback linearization is 
performed by introducing the transformation 

v = hXy,u) 

-2 



where h^iy,u) is the best available invertible approximation of hXx,u) , and v is 
commonly referred to as pseudo-control. Since only the measured signal can be used for 
control, a dynamic compensator is introduced to stabilize the linear portion of the tracking 
error dynamics, and the NN operates only on the available input/output data. Under the 
assumption that the plant is observable, we have shown that the unknown model inversion 
error can be mapped from present and past input/output data [J2-Year2]. The delayed 
signal generation block of Fig. 1 provides the inputs required for this function. 

One of the immediate advantages of our result is that the dimension of the plant (dimension 
of the state vector x)\?, not needed in the design, and the only information required is the 
relative degree of the measured signal. Thus, the result is applicable to plants having both 
unstructured parametric uncertainty and unstructured unmodeled dynamics. 

Example: Consider a two-degree of   ^ 
freedom system 

X2 = -2(Xi  - 1)X2 - ^1 + M 

X^= X^ 

with regulated output given by 

y = Xi+X2 20 30 
Time [sec] 

Figure 2. Responses With Unmodeled Dynamics 

40 

The output y has a relative degree 
of two. The system can be though of a nonlinear single degree of freedom rigid body {x^ 
and x^ states) coupled to a lightly damped urmiodeled mode. The unmodeled mode is 
excited by the rigid body dynamics and is coupled to the output. Ideally we wish to 
regulate onlyxj, and not the measurement y. The low natural frequency of the unmodeled 
mode is encompassed by the bandwidth of the control design. Moreover, the inverting 
design is performed without knowledge of the nonlinearities in the rigid body mode. This 
presents a very difficult control design challenge. Figure 2 shows thejc, state responses 
with neural network adaptation gains of 0, 10 and 50, and compares these responses with 
the command filter output (smooth line). The response without adaptation (dotted line, 
adaptation gain = 0) is unstable, due to the unmodeled mode. The response progressivly 
improves and approaches the command as the adaptation gain is increased. This 
demonstrates the ability of the output feedback approach to accommodate both parametric 
uncertainty (in the rigid body dynamics) and unmodeled dynamics (the added mode). An 
illusfration is given in [C3] that addresses nonlinear modeling of the actuation process and 
the use of 'hedging' in the adaptive process, but for the case of state feedback. An 
application to flight control currently undergoing flight testing is described in [CIO]. 



Decentralized Adaptive Control. fJ2-Year2J: We have developed an adaptive decentralized 
state feedback control architecture for large-scale systems with interconnections being 
bounded linearly by their tracking error norms. The local subsystems are assumed to be 
feedback linearizable. Future research will investigate removing this last assumption, and 
possible extensions to the output feedback case. 

2.2 Accomplishments in Year-2 

Ausmentins Linear Controllers, fC7, C14J: Most work in adaptive control for nonlinear 
systems assumes that an inverting type of control is used for the non-adaptive portion of the 
control system design. Considering that the vast majority of existing controllers are not 
based on inversion, it would be highly desirable to retrofit such systems with an adaptive 
element. Moreover, there are many applications in which inverting design is not an option, 
such as control of large flexible systems. Existing methods of augmenting linear 
controllers are restricted to state feedback, and impose restrictive conditions. For example 
they might require that the regulated variable have full relative degree, or that the plant 
uncertainty is matched. Also, since these methods are based on comparing the state 
response of an idealized model with the true plant, they caimot be applied to situations in 
which the true plant dynamics, including the disturbance process dynamics, are higher 
order that the model used to design the linear controller. Therefore they are not robust with 
respect to uiraiodeled dynamics. Flexible systems provide a good example in which state 
feedback based approaches are not useful. The controller architecture we have developed 
can be applied without any of the restrictions mentioned above^'''^^'*^''*^". The only 
restriction is that the relative degree of the regulated output is known. The approach has 
been applied to a 3-disk pendulum laboratory model. An example experimental result is 
depicted in Fig. 3. In this result, the disturbance process is applied to the upper disk, and 
the response of the lower disk is controlled. The disturbance consists of a combination of 
sinusoids. The response with NN on shows a significant improvement over the response 
for a linear controller designed using a rigid body model. This dramatically demonstrates 
that our design is not only robust to unmodeled dynamics, but is also adaptive to these 
dynamics, including the dynamics of the disturbance process as well. We are currently 
developing an extension of this research that can be applied to non-minimum phase 
systems^' . 
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Fig. 3. Experimental result depicting adaptive control of a flexible system. 

Decentralized Adaptive Control: Decentralization and cooperation are diametrically 
opposed objectives. That is, the need to cooperate gives rise to a greater need for 
communication. The problem of bringing multiple vehicles into close formation is a prime 
example. To achieve both decentralized and cooperative control, we need to demonstrate 
that it is possible for a member of a group of vehicles to 'learn' the behavior of at least its 
neighboring vehicles by observing their relative motions. This should be possible since 
swarms in nature achieve this using vision as their primary sensing modality. The 
objective during this period has been to mathematically formulate a problem that would 
form the basis for such a demonstration, and to test this formulation in simulation. 
Consider a group of N vehicles whose individual dynamics are defined by 

(1) 
^i =fi{xi,di,Ui) , i = l,2,---,N 
yi=hi{xi) 

In (1) di is a vector of disturbance processes acting on the /vehicle, MJ- is the vehicle's 

control vector, andj;^ denotes a set of local variables to be controlled. Assume that the 
vehicles cooperate by controlling a joint variable 

z = g{x) (2) 

where x is the union of the state vectors of all the vehicles within the group.   Let the 
relative degree of z be r, so that 

dV 
i = \....r-\ 

(3) 



To arrive at a decentralized control solution, the following approximation is employed by 
th the i    vehicle 

?('•) - A zr=gri{xi,z,Ui) (4) 

Eq. (4) forms the basis for an inverting control design in which the modeling error is 

Ai=grix,d,u)-gri(xi,y,Ui) (5) 

Each vehicle's inverting solution is augmented with an adaptive element that estimates and 
approximately cancels A/. The degree to which this can be accomplished is a measure of 
the degree to which it is possible for one vehicle to 'learn' the behavior of the other vehicle 
by observing its relative motions. Fig. 4 compares the resulting trajectories obtained for a 
2-D engagement model in whichAircraft 1 regulates heading as its local variable, and both 
aircraft cooperate in regulating range. The center portion of this figure shows what 
happens using the NN adaptive control approach of Re£ Al. The right portion of this 
figure compares the NN output with the modeling error (6) for Aircraft 2. 

i ^*»* ~-s 1 
1 / NoNN 
i  J —,/ 
i I"— 

^ 
i 

\' ■^ Am Tatt 1 
< 

^N,. 
i --.. Ai •era ft2 

y -•i. 
J2   - 1 0 1 2 3 4 5    i 

WithNN 

t 

° ^              ti.2and NN output 
0'^^ ^'   1    1    II r- ^f^^^^          ^^ 
t-       A^^ ■^       4/ -ow-                 tt 

-QW~ 

'e--\0 -8   -6   -4   -2    0    2    4     6°# 2   4   6   8   10 12 14 16 18 20 

Fig. 4. The role of adaptation in decentralized adaptive flight control. 

Adaptive State Estimation [C13]: Existing methods for nonlinear state estimation impose 
assumptions that severely limit their domain of apphcability, such as to systems that are 
linear with respect to unknown parameters, or systems that can be transformed to output 
feedback form. NN based adaptive observers have relaxed some of these assumptions; 
however robustness to unmodeled dynamics and disturbances was not shown in the most 
general case. We have developed a methodology for adaptive state estimation of bounded 
nonlinear processes by augmenting an existing linear observer with two neural networks 

Fig.3 ,J4-Year3 that model the uncertainties from a finite history of available measurements' 
illustrates the performance of our adaptive observer for a nonlinear process*^''^ and 
compares it to the performance of the linear observer. The simulated dynamics have a 
combination of unmodeled sinusoidal and step disturbances. 



f    2- 

10 12 14 m 18 20 

14 ^16 18; 20 

time 

Fig.5 Performance of a two NN augmented adaptive observer. 

2.3 Accomplishments in Year-3 

Decentralized adaptive output feedbackfCl, C2, S5]: 
This is formulated as a control design problem for a 
system composed of djTiamically interconnected 
subsystems, with the requirement that the controller for 
each subsystem utilize only locally sensed outputs to 
cause a subset of these outputs to track a reference 
command. Distributed systems, or systems with an 
array of sensors and actuators, are one technology area 
motivating the design of decentralized controllers, as 
are large space structures and large flexible vidngs. The 
main problem in this area concerns the manner in which 
the dynamic interconnections are treated in the design 
process. In general, the interconnections may depend 
upon the entire state and control of the large-scale 
system. The status of our current effort in this 
direction^'' ^^ demonstrates how one can achieve 
decentralized adaptive output feedback tracking with 
bounded errors, if the reference model states of each 
subsystem are known to all the controllers. Our results 
are valid for output feedback for a general class of 
nonlinear systems, without a restriction on relative 
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Fig. 7. Output Responses. 



degree. However, we show only local ultimate boundedness of error signals. The 
assumption that the states of all the subsystem references models are known to each 
controller may be justified when considering coordinated control of large-scale systems, 
where a higher level centralized controller exists that broadcasts all the subsystem 
commands to every controller. However, there exist many situations where this assumption 
does not apply, or is not desirable. In particular, many large-scale systems in nature, 
commonly referred to as swarms, exhibit highly coordinated motions, without the use of a 
higher level authority. This is particularly important when operating in an uncertain 
environment. This research effort will be directed at achieving tiiis behavior in an 
engineered system. If this theoretical breakthrough is achieved, it suggests that one can, for 
example, control a large complex structure by installing sensor/actuator packages over the 
structure, and have each adapt to control the local behavior. Figure 6 illustrates three 
masses, each supporting an inverted pendulum . The d5nnamics are nonlinear, non- 
minimum phase, and the equilibrium condition with 9^ = 0 is unstable. Each nominal 
controller (without NN augmentation) is designed to track a position command while 
maintaining9^=0 . The coupling between the masses is ignored, and the designs are 
decentralized. None of the states of the decoupled systems are communicated to the 
adaptive element. Figure 7 illustrates the response of the center with and without NN 
augmentation. 

Formation Flisht Control fC9, C12, C19J: In a collaborative effort with Boeing^^' ^^^ we 
have recently been looking at adaptive control of two aircraft in a closed-couple formation. 
The control problem is associated with control design for the trailing aircraft. Flying in 
formation, the trailing aircraft must constantly seek an optimal relative position that 
minimizes the aerodynamic drag force induced by the wing tip vortices of the lead aircraft. 
At the heart of this approach is the fact that it relies on utilizing a NN to compute an 
approximation of the local extremum of an unknown fiinction to be minimized. The point 
is that adaptive extremum seeking control relies on the NN to not simply reduce a tracking 
erring signal, but instead to create an internal model of the fimction being minimized. 
Therefore, the ultimate success of this approach to optimization will rely heavily on the 
development of adaptive laws that are focused on internally modeling the uncertainty in the 
system. Future research will be focused on this direction. 
A second area in which we have made considerable progress is that of controlling a swarm 
of vehicles attempting to fly a formation within a field of obstacles*^'^. In considering the 
problem of formation control in the deployment of intelligent munitions, it would be highly 
desirable, both fi-om a mission and a cost perspective, to limit the information that is 
transmitted between vehicles in formation. However, the lack of information regarding the 
state of motion of neighboring vehicles can lead to degraded performance and even 
instability. We have developed an adaptive output feedback approach for addressing this 
problem. We design adaptive formation controllers that allow each vehicle in formation to 
maintain separation and relative orientation with respect to neighboring vehicles, while 
avoiding obstacles. The method works by enabling each vehicle in the formation to 
adaptively correct for the effect that the motions of neighboring vehicles have when 
regulating relative variables like range and line of sight. It is assumed that estimates of 
these variables can be derived using passive, vision-based sensors. The need for explicit 
communication to maintain formation is minimized and the resulting controller solution is 



decentralized. We implement a reactive obstacle avoidance controller to navigate in an 
environment with obstacles. The formation controller and obstacle avoidance controller are 
outer-loop controllers whose outputs are speed and heading commands. These commands 
are blended together to generate composite speed and heading commands that are inputs to 
the inner-loop controller. The weights used for blending the commands depend upon the 
priority of the task at hand. Figures 8 and 9 illustrate the method with an example involving 
a team of three aircraft keeping formation in the presence of obstacles. 

Fig. 8. Trajectory without NN Adaptation.     Fig. 9. Trajectory with NN Adaptation. 

Other Accomplishments:   Several of our previous publications in the area of adaptive 
J1-J3 output feedback control have appeared in journal versions " . An extension to MIMO 

systems appears in [S2] and to non-minimum phase systems in [S4]. We also have a new 
result on asymptotic tracking using multiplayer NNs [S6]. In addition we have provided a 
rigorous proof on the reconstruction of continuous time djTiamics using delayed outputs^'*. 



3. Transitions 

Guided Munitions. fJll: Completed Phase-Hi SBIR effort with Guided Systems Technologies. This work is 
aimed at demonstrating that a single tail kit with a fixed autopilot design can be used to control a wide class 
of guided munitions.   Also, the autopilot design must accommodate changes in mission_profiles, and not 
require accurate aerodynamic data. Two highly successful flight tests were completed at 
EglinAFB. 
Government Customer: AFWL, Eglin AFB 

POC: Johnny Evers, 850-882-2961 x3330, evers@eglin.af.mil 

Corporate Customer: Boeing Phantom Works 
POC: Kevin Holt, 636-925-5114, kevin.d.holt@.boeing.com 

Adaptive Control of Flexible Vehicles [C9]: Two collaborative efforts funded by 
industry. Both utilize our adaptive output feedback approach to deal with flexible 
dynamics in flight control applications. The goal of this research is to overcome 
the problems encountered in designs that employ structural filters. We have shown 
that it may be possible to eliminate the use of structural filters all together. 

Corporate Customers: Raytheon and Lockheed 
Technical POCs:        Mike McFarland, 520-794-0592, mbmcfarland(g>west.ravtheon.com 

Jim Buffington, :817-935-1030, iames.m.buffington(S;lmco.com 

Intellisent Flizht Control System Desisn for the F15: The goal of this effort is to design 
and evaluate a Neural Network (NN) based adaptive control algorithm for NASA's F-15 
aircraft. Dr. CaHse is developing the flight control software, and will provide on-site 
flight test support. Ultimately this research will be transitioned to a C-17 aircraft. 

Government Customers: NASA Ames/Dryden Flight Research Center 
Technical POC:   Mr. John Burken. (661) 276-3726. iohn.burkenfa),dfrc.nasa.gov 

Integrated Adaptive Guidance and Flisht Control for Launch Vehicles, fClOJ: Our 
approach has completely eliminated the need for gain tables and makes no use of 
the aerodynamic data set. We have demonstrated adaptation to both force and 
moment perturbations due to failure. Current work also includes on on-line 
trajectory generation and adaptation for abort trajectories. 

Government Customers: NASA Marshall and WPAFB 
Technical POCs:        Dr. John Hanson, 256-544-2239, iohn.hanson(g>,msfc.nasa.gov 

Dr. Anhtuan D. Ngo, (937) 255-8494, anhtuan.ngo@va.afi-l.af mil 
Corporate Custormers: Boeing 
Technical POCs:        Dr. Eugene Lavretsky, (562) 982-9269, eugene.lavretskv@boeing.com 

Mr. Sunil Tandon, (714) 896-2680, sunil.tandon@boeing.com 
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Formation Flight Control. fC9, C12J: New flight control design 
approach was developed for multi UAV formations aimed at extending 
range and endurance. The solution relies on adaptive control and online 
extremum command generation. The developed methodology mimics 
piloting techniques during a closed coupled formation flight. 

Government Customer: NASA Dryden Flight Research Center 
technical POC: John Burken, 661-276-3726, iohn.burken(g),dfrc.nasa.gov 
Corporate Custormer: Boeing 
Technical POCs:        Dr. Eugene Lavretsky, (714) 235-7736, eugene.lavretskv@boeing.com 

Adaptive Control of Advanced Fighter Aircraft in High PC Flisht Regimes.: 

[C21]: The goal of this effort is to demonstrate the use of dynamic 
inversion based adaptive output feedback control for high angle of attack 
flight control. The approach is being applied to an F-15 ACTIVE model 
with thrust-vectoring capabihty. The model is valid up to 60° angle-of-attack 
and includes Thrust Vector Control (TVC). The main objective of the 
control design is to demonstrate adaptation to aerodynamic uncertainty in the 
form of both unmodeled parameter variations and unmodeled dynamics not 
present in the nominal inversion design. 

Government Customer: NASA Langley Research Center 
Technical POC: Mark Motter, (757) 864-6978, m.a.motter@larc.nasa.gov 

4. Consultations 

Prof. Calise spent 4 months working with Johnny Evers (Eglin AFB), in the area of 
Adaptive Guidance and Flight Control, October 01 - April 02. Visiting position was 
arranged through the University of Florida GERC. Dr. Hovakimyan participated in an NSF 
"CAREER" proposals review panel in November 01. 

Prof. Calise worked in collaboration with Dr. Eugene Lavretsky and Dr. Kevin Wise of the 
Boeing Phantom Works in applying neural network based adaptive control to Boeing's 
UCAV configuration. The approximate time period of this collaboration was from 12/02 to 
4/03. 
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